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An integral method of computing turbulent flow parameters at a permeable wall 
through which fluid with a drag-reducing polymer impurity is delivered is pro- 
posed on the basis of an asymptotic analysis of velocity and concentration 
profiles. Formulas are obtained to compute the effective impurity concentra- 
tion. 

One of the rational methods of inserting an impurity into a near-wall flow is the dis- 
tributed delivery of a solution through a permeable (porous or perforated) wall surface. 
In application to the utilization of active impurities reducing turbulent friction (particu- 
larly polymer admixtures), this method is still of interest because blowing the fluid carry- 
ing the impurity through the permeable wall also results in drag diminution. 

Up to now there have been no sufficiently well-founded schemes for computing such flows, 
which did not permit reliable prediction of the possible reduction in friction by polymer 
admixtures. An integral method is proposed below for computation of the turbulent boundary 
layer that relies on an asymptotic analysis of the velocity and concentration profiles of 
the active impurity at the permeable wall. For simplicity just the normal injection of 
a dilute polymer solution is examined and it is assumed that the injection velocity v w is 
small compared with the free stream velocity u 6. This permits conservation of the boundary 
layer approximation. 

It is known [I] that dimensionless transverse mixing path length distributions > = 
lux/~ , tangential stress x + = ~/x w and diffusion impurity flow q+ = q/qw are sufficient for 
computation of the velocity and concentration profiles as well as for determining the integral 
characteristics of the flow (such as 6 + = 6ux/v, ~ = ux/u 6, cf = 2~ 2, etc.). Indeed from 
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with boundary conditions u + = 0 and c + = 0 at the wall (for y+ = 0) yield profiles of u + 
and c + in transverse sections of the flow. 

Following [2], we assume that the distributions of x + and q+ in a gradient-free boundary 
layer on a permeable surface has the form 

x+ = ~+ (~, u +, v~) = 1 ---3~ z @ 2~ ~ q- v~u + (1 __~)2 

q+ = q+ (~, c+, v~) = 1 - -  3~ 2 + 2~ a + v~c+ (1 --~)~, (3)  

g V~ = Vw ~ =----~ ' U~ 

Strictly speaking, (3) are valid only under the condition of equality of the thicknesses 
of the dynamic and diffusion boundary layers. In connection with the fact that propagation 
of the relatively slow-moving polymer impurity (the coefficient of its molecular diffusion 
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in water and other low-molecular solvents is ordinarily of the order of 10-v-10 -8 cmi/sec, 
i.e., Sc ~ i) beyond the dynamic layer limits can be neglected, it is sufficient that the 
whole wall surface flowed around by the stream, starting from its leading edge, be perforated 
for the mentioned condition to be satisfied. 

To describe the transverse transfer of momentum we take (see [3]) a mixing path distri- 
bution in the form 

l+ = 6+/~ (~)[1 - -  exp (--y+F V-1 + v~u+/A)], (4)  

where s = ath (Kg/a), $ = y/6, < ~ 0.4, a ~ 0.075, A ~ 26, and the parameter F takes 
account of the impurity "activity" (F < i for polymer admixtures reducing friction while 
F = i for a passive impurity). Formulas relating F to the stream parameters, the molecular 
characteristics of the dissolved polymer, and its effective concentration c e are presented 
in [3]. 

It follows from an asymptotic analysis of the solutions of (i) and (2) by using (3) 
and (4), performed analogously to [i], that in the outer boundary layer domain 
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E x a c t l y  as  in  [1 ] ,  e x p l i c i t  f o r m u l a s  can be o b t a i n e d  f o r  t h e  p a r a m e t e r  B(F, Vw +) and 
t h e  f u n c t i o n  f ( ~ ,  Vw +) in  t h e  d i m e n s i o n l e s s  p r o f i l e s  (5) and ( 6 ) .  The r e s u l t s  o f  c o m p u t a t i o n s  
pe r fo rmed  by u s i n g  t h e s e  f o r m u l a s  p e r m i t  p r o p o s a l ,  in  p a r t i c u l a r ,  o f  t h e  s i mp l e  a p p r o x i m a t i o n  
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in which 

At, + tv~ ) ~ 3,31 exp (--3,88v +) - -  exp (-- 125v +) -}- 6,5, 

C a (v +) ~ 2,4 exp (--4,18v +) - -  1,3 exp (--92v +) + 2,5, 

m (vS.) ~ 31,85v + + 0,6 
63,7v + + 1 

The c o r r e c t i o n  f u n c t i o n  f ( ~ ,  Vw +) in  (5) i s  i n d e p e n d e n t ,  in  p r a c t i c e ,  o f  t h e  d i m e n s i o n -  
l e s s  injection velocity Vw+ = Vw/U T. This means that exactly as the polymer admixtures, 
weak normal injection is an "interior" factor exerting substantial influence on the flow 
structure only near the wall. Consequently 

f (~, v +)  ~ f (~, o) = fo (~) = q (~) • 

Here T0+(~) = ~+($, u +, O) is the dimensionless tangential stress distribution in the boundary 
layer on an impermeable surface. 
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Fig. i. Dependence of the relative viscous 
sublayer thickness 6v+/6v0 + on a permeable 
plate on a dimensionless injection Vw+6v0 + for 
different values of the parameter F. i) F = 
0.3; 2) 0.5; 3) 1.0. The points are experi- 
mental data from [4]. 

145 



It must be emphasized that the asymptotic profile of the relative concentration (6) 
is obtained by using the condition Sc m i. It describes well the concentration distribution 
beyond the limits of the diffusion sublayer even for Sc ~ i00. The polymer admixtures ordi- 
narily applied to reduce turbulent friction are characterized by the values Sc ~ 10s-106 and 
sometimes even higher. 

In connection with the profile (6), the question occurs of the effective polymer sub- 
stance concentration c e in a transverse boundary layer section. The parameter F in the mixing 
path length (4) depends on precisely this concentration (see [3]) and therefore, the quantity 
B(F, Vw +) in (5) and (6) and in the long run, the reduction of turbulent friction does too. 
Polymer admixtures interact with turbulent perturbations within the limits of the near-wall 
layer, and more accurately, in the buffer domain of the viscous sublayer and its adjoining 
domain of the logarithmic velocity distribution. The greatest intensity of "work" of the 
macromolecules occurs in the neighborhood of the viscous sublayer boundary. Consequently, 
it can be considered that the polymer substance concentration on this boundary is effective, 
i.e., c e = C(6v). 

It is easy to show that the equality 

{ [ 1 ln6~-I-B(F, v~)]+2}=26v~, (9 )  F~ ~ • 

in which 6v0 + ~ 56 is the dimensionless viscous sublayer thickness on an impermeable surface 
for F = I is valid for the dimensionless viscous sublayer thickness. Taking account of 
(9) an equation to determine the effective admixture concentration follows from (6) 

_ _  [ 26~ ] 2" (i0) Ce = 1 - -  + § 
cw F6~ (v~ ~ + 2) 

Dependences computed by means of (7) and (9) for the relative viscous sublayer thickness 
6v+/6v0 + on a permeable plate on the parameter Vw+6v0 + are presented in Fig. 1 for different 
values of F. Shown there for comparison are test data [4] corresponding to distributed 
injection of a fluid with a passive impurity. It is seen that for F = i utilization of 
asymptotic formulas results in good agreement with experiment. In the presence of an active 
impurity the dimensionless viscous sublayer thickness increases while injection results 
in its contraction. 

Using the velocity profile (5) and the expression (8), the dimensionless displacement 
thickness R* = 6*u6/v and loss of momentum R** = 6**u6/v can be represented in the form 

where 

R* -- 6+61, R** -- 6+ (01- -  o)G2), (11)  
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Fig. 2. Distributions of the local friction coefficient cf(r) 
on a permeable plate for a distributed passive impurity deliv- 
ery and a dilute solution of polyethylene oxide (u 6 = 103 cm/ 
sec; Vw/U 6 = i0-~; i) v w = 0; 2) passive impurity injection; 
3) distributed delivery of polymer impurity, polyethylene oxide 
with mean molecular mass M = 2.106 g/mole for c w = 3"10 -6 g/cm3; 
4) 3"10 -s g/cm 3, and 5) 3.10 -4 g/cm3). Solid lines are computa- 
tion by the integral method, and dashes are numerical solution 
of the boundary layer equations. 

Entering into the system of integral relations governing the distributions of 6 + , ~, 
and Ce/C w in the turbulent boundary layer on a permeable plate are: 

the momentum equation 

dR** v w xua 
--, r = - - ,  (12)  

dr ua 

the drag law following from (5) and (8) 

4e[~ -k [o (1)] = 4 - - v ~  2, (13)  

Expressions (7)-(ii) and formulas for the parameter F (see [3]). The quantity R** 
in some (initial) section of the boundary layer as well as values of u6, v w and c w should 
be given for integration of the system mentioned. 

In order to confirm the assumptions made in the proposed computational scheme (in par- 
ticular, the assumptions about ~+, q+ and the effective concentration Ce), a numerical solu- 
tion of the complete system of boundary layer equations is performed by using the expression 
(4) for the mixing path. Diagrams of the drag cf(r) obtained by an integral method and from 
the numerical solution are displayed in Fig. 2. The discrepancies between corresponding 
cf distributions do not exceed 3-4% in a sufficiently broad range of r (from 2.106 to 4.107), 
which indicates the acceptability of the assumptions made. The integral method yields a 
barely higher value of the local friction drag coefficient cf everywhere. 
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Fig. 3. Diagrams of the drag cf(r) of a per- 
meable plate for different concentrations of a 
polyethylene oxide solution delivered through the 
permeable plate surface (u 6 = i0 a cm/sec; Vw/U 6 = 
10-a; i) v w = 0; 2) passive impurity injection; 
3) c w = 6.10 -6 g/cm3; 4) 3.10 -5 g/cma; 5) 6-10 -5 
g/cmS; 6) 10 -4 g/cm3). 
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Drag diagrams computed by an integral method are shown in Fig. 3 for a permeable plate 
whose boundary layer is turbulized for r = I06. It is seen that as the concentration c w of 
the delivered solution increases in each boundary layer section, the effect of reducing 
the friction first grows and then when the quantity c e exceeds the optimal macromolecule con- 
centration, starts to be reduced. The joint influence of injection and polymer admixtures 
permits obtaining a substantial reduction in turbulent friction even for very large values 
of Vw/U ~ . 

Notation. u 6 is the free stream velocity; u~ is the dynamic velocity; ~w is the tangen- 
tial stress on the wall; qw is the diffusion impurity flux through the permeable wall; v and 
v t are molecular and turbulent viscosity coefficients; c w is the impurity concentration on 
the wall; ~ and 6v are boundary layer and viscous sublayer thicknesses; Sc and SEt are the 
molecular and turbulent Schmidt numbers; z and y are the longitudinal and transverse coordi- 
nates and cf is the local friction drag coefficient. 
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MATHEMATICAL MODELLING OF NONISOTHERMAL TURBULENT ONE- AND TWO-PHASE 

SWIRLING FLOWS 

V. V. Novomlinskii UDC 532.529 

A mathematical model is developed and realized numerically for turbulent gas- 
dispersed nonisothermal swirling flows on the basis of Navier-Stokes type equa- 
tions by using a modified k--E turbulence model. Corrections taking account of 
the influence of particles and the flow swirling on k, E are introduced into 
these latter. A finite-difference method of controlled volume is used to solve 
the equations. Computations are compared with experimental data on swirling 
single-phase flows in a cylindrical channel. Data are obtained about the influ- 
ence.of the nonisothermy on the length of the recirculation zone. 

Introduction. Two-phase (gas-solid or liquid particles) turbulent high-temperature 
swirling flows are utilized extensively in plasma technology, plasma chemistry, and powder 
metallurgy. The investigation of such flows and the subsequent development of existing 
technologies on this basis can be carried out, in particular, by constructing numerical 
models of these processes and executing numerical experiments by using such models, as would 
permit determination of the most important flow characteristics, the velocity, phase temper- 
atures, powder concentration, etc. 

Different turbulent two-phase jet flows, computation methods, and results of numerical 
modelling are presented in [i]. The extensively known Prandtl mixing-path model modified 
by G. N. Abramovich for gas-dispersed flows, is used as the closure model. 

Turbulent swirling flows are utilized for intensification of heat and mass transfer 
processes in different apparatus as well as for electric arc stabilization in plasmatrons. 
It is known that strongly swirling flows are characterized by the occurrence of recirculation 
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